Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Asunto principal
Tipo del documento
Intervalo de año
1.
biorxiv; 2022.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2022.10.18.512708

RESUMEN

We and others have previously shown that the SARS-CoV-2 accessory protein ORF6 is a powerful antagonist of the interferon (IFN) signaling pathway by directly interacting with Nup98-Rae1 at the nuclear pore complex (NPC) and disrupting bidirectional nucleo-cytoplasmic trafficking. In this study, we further assessed the role of ORF6 during infection using recombinant SARS-CoV-2 viruses carrying either a deletion or a well characterized M58R loss-of-function mutation in ORF6. We show that ORF6 plays a key role in the antagonism of IFN signaling and in viral pathogenesis by interfering with karyopherin(importin)-mediated nuclear import during SARS-CoV-2 infection both in vitro, and in the Syrian golden hamster model in vivo. In addition, we found that ORF6-Nup98 interaction also contributes to inhibition of cellular mRNA export during SARS-CoV-2 infection. As a result, ORF6 expression significantly remodels the host cell proteome upon infection. Importantly, we also unravel a previously unrecognized function of ORF6 in the modulation of viral protein expression, which is independent of its function at the nuclear pore. Lastly, we characterized the ORF6 D61L mutation that recently emerged in Omicron BA.2 and BA.4 and demonstrated that it is able to disrupt ORF6 protein functions at the NPC and to impair SARS-CoV-2 innate immune evasion strategies. Importantly, the now more abundant Omicron BA.5 lacks this loss-of-function polymorphism in ORF6. Altogether, our findings not only further highlight the key role of ORF6 in the antagonism of the antiviral innate immune response, but also emphasize the importance of studying the role of non-spike mutations to better understand the mechanisms governing differential pathogenicity and immune evasion strategies of SARS-CoV-2 and its evolving variants. ONE SENTENCE SUMMARYSARS-CoV-2 ORF6 subverts bidirectional nucleo-cytoplasmic trafficking to inhibit host gene expression and contribute to viral pathogenesis.


Asunto(s)
COVID-19
2.
biorxiv; 2022.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2022.09.23.509261

RESUMEN

Bats have evolved features unique amongst mammals, including flight, laryngeal echolocation, and certain species have been shown to have a unique immune response that may enable them to tolerate viruses such as SARS-CoVs, MERS-CoVs, Nipah, and Marburg viruses. Robust cellular models have yet to be developed for bats, hindering our ability to further understand their special biology and handling of viral pathogens. To establish bats as new model study species, we generated induced pluripotent stem cells (iPSCs) from a wild greater horseshoe bat ( Rhinolophus ferrumequinum ) using a modified Yamanaka protocol. Rhinolophids are amongst the longest living bat species and are asymptomatic carriers of coronaviruses, including one of the viruses most closely related to SARS-CoV-2. Bat induced pluripotent stem (BiPS) cells were stable in culture, readily differentiated into all three germ layers, and formed complex embryoid bodies, including organoids. The BiPS cells were found to have a core pluripotency gene expression program similar to that of other species, but it also resembled that of cells attacked by viruses. The BiPS cells produced a rich set of diverse endogenized viral sequences and in particular retroviruses. We further validated our protocol by developing iPS cells from an evolutionary distant bat species Myotis myotis (greater mouse-eared bat) non-lethally sampled in the wild, which exhibited similar attributes to the greater horseshoe bat iPS cells, suggesting that this unique pluripotent state evolved in the ancestral bat lineage. Although previous studies have suggested that bats have developed powerful strategies to tame their inflammatory response, our results argue that they have also evolved mechanisms to accommodate a substantial load of endogenous viral sequences and suggest that the natural history of bats and viruses is more profoundly intertwined than previously thought. Further study of bat iPS cells and their differentiated progeny should advance our understanding of the role bats play as virus hosts, provide a novel method of disease surveillance, and enable the functional studies required to ascertain the molecular basis of bats’ unique traits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA